

The University of Montana College of Technology Hydrogen Education Program

Paul Williamson

Dean, College of Technology

Jerry Bromenshenk

MT DOE/EPSCoR Director

May 2004

- The overall objective is to develop educational programs and facilities for training energy technicians with an emphasis on hydrogen technologies
 - Develop an Energy Technician's Curriculum
 - Develop a Hydrogen Safety Center
 - Establish an Educational/Interactive Web Site
 - Plan for the Montana Hydrogen Futures Program

Education

"Education crosscuts all of the Hydrogen, Fuel Cells & Infrastructure Technologies Program Components"

-HFCIT 6/03/03

- College Curriculum Energy Engineers and Technicians
 - Work with DOE to Develop and Make Available a Complete Alternative Energy Curriculum
 - 1, 2, and 4 Year Programs that Provide Hydrogen Workforce Infrastructure
 - Training for Potential End-Users
 - Training of the Labor Force

- College Curriculum Energy Engineers and Technicians
 - *Aim:*
 - Provide traditional, non-traditional, and hands-on training for hydrogen and alternative energy (wind, solar, biomass)
 - Energy professionals
 - Lay persons
 - Business entrepreneurs
 - Government Agencies
 - Organizations

- Hydrogen Safety Center
 - Establish world class hydrogen safety training and education
 - Provide focal point for educational transfer of information and communication
 - Based on input from national professionals, DOE labs, energy leaders, academic faculty and staff (MT Tech, UM), energy leaders, and safety training providers

- Develop a Hydrogen Futures information and educational web site
 - Support growth and development of hydrogen technologies
 - Create a digital and hard copy library
 - Provide an interactive information clearinghouse concerning the use of hydrogen and fuel cell technologies:
 - Clearly communicate
 - Benefits and Challenges
 - Safety Issues
 - Economics (Market Introduction)
 - Research (Status, Requirements)
 - Education (Understanding)

- Planning for the UM/COT Hydrogen Futures Program
 - Identify programs and facilities needed to assist and support:
 - DOE and DOE laboratories
 - Government agencies
 - Teachers and Students
 - Large-scale end users
 - Energy industry
 - Businesses
 - Public

Budget

- Total Funding for the Project
 - \$ 735, 807 12 Month
 - Project Period
 - ~ June 1, 2004-May 30, 2004
- New Project
 - Not yet started

- The hydrogen economy is a revolutionary change
 - People are hesitant or resistant to change
 - High degree of comfort with using gasoline
- Education is essential
 - Trained Work Force
 - Public Awareness/Understanding

- Lack of awareness
 - Result in little incentive to change
- Lack of Experience
 - Real world, hands on enhances understanding and comfort
- Institutional Barriers
 - Need to identify and reach intended audiences
- Regional Differences
 - What applies to one, any not apply to another

- Safe Practices are Essential
 - Can't afford catastrophic failure
 - Irreparable harm to hydrogen future

Standards Development

Research, Development & Demonstration

HFCIT 6/03/03

- Safety Information and Training
 - Access to proprietary data
 - Find up to date/validated sata
 - Obtain industry consensus
 - Address liability issues
 - Lack of reporting requirements for safety incidents
 - Lack of standards and protocols
 - Lack of technical and scientific understanding of hydrogen systems
 - Address QA and expense of data collection and management

HFCIT 6/03/03

Approach

- Identify audience/end-user needs
 - Develop activities and materials
 - Test activities (curriculum, safety, web)
 - Revise Activities
 - Implement programs
 - Assess results
 - Obtain feedback from stakeholders and audiences

Approach

Messaging is important

- Communicate
 - Benefits of hydrogen and fuel cell technologies
 - Technical challenges ahead
 - Important research, development, and demonstration (RD&D) needed for successful commercialization
 - Safety awareness
 - Timeframe for mass market introduction

Approach

- Obtain stakeholder input
 - DOE Programs
 - DOE Laboratories
 - Industry
 - Government
 - Non-government organizations
 - Universities

Timeline

• Timeline

H	2 Safety	Curric.	Web	Future Prg
Aug- Dec ID	Eq/Trng	ID Cs	ID Cont	Arch
Jan-Mar Es	st Log	St Ap	Outline	Prog PI
Apr- Jun Sc	chedule	Dev.	Dev.	Fac
July Sept Of	ffer	Offer	Set up	Plan Comp

Technical Accomplishments/Programs

- Component Identification/Planning
 - Technical program elements
 - Safety program technical requirements
 - Curriculum demands on Equipment for Training

Interactions/Collaborations

- MT Tech Butte
- INNL Idaho Falls
- Hydrogen Safety Inc.
- Pacific Northwest Labs
- NREL